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Abstract

We integrate a canonical epidemiological model into a general equilibrium frame-
work with high-skill and low-skill workers, each choosing to work either from their
work locations (onsite) or from their homes (remote). Onsite and remote labour
are imperfect substitutes, but more substitutable for high-skill relative to low-skill
workers. Calibrating the model to the Indian economy, we find that different con-
tainment policies, by restricting onsite labour, disproportionately affects low-skill
compared to high-skill workers, thereby worsening the already existing inequal-
ity. Furthermore, the containment policies are less effective in controlling disease
spread among low-skill workers as they optimally choose to work more onsite in
comparison to their high-skill counterparts. Thus, low-skill workers face an exces-
sive burden on both economic and health outcomes, with increased consumption
inequality and higher incidence of infections.
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1. Introduction

In December 2019, a virus started to spread among the population in the Chinese city

of Wuhan. In less than four months, the viral disease turned into a pandemic, killing

thousands, infecting hundreds of thousands, overwhelming health care systems and

literally bringing entire countries to a standstill. Covid-19, or the coronavirus disease

(2019) has, as of now, infected more than 3 million people in 210 countries, while killing

more than 200,000.

To contain the spread of the disease, governments around the world have put in

place various containment measures, that varies from the relatively benign, such as

carrying out day-to-day activities while maintaining social distancing, to the extreme,

such as complete shutdowns where people are prevented from stepping out of their

homes. But as entire sectors of the economy have stopped functioning due to these

containment measures, the effect on average income has been devastating. Moreover,

the uncertainty surrounding the disease has made it difficult to predict the full eco-

nomic impact once the pandemic subsides.

In this paper, we attempt to do just that. We embed a canonical epidemiological

model of a pandemic into a dynamic, general equilibrium model of production and

consumption in order to quantify the effect of Covid-19 on both economic as well as

health outcomes. In particular, we extend Eichenbaum et al. (2020) to two types of

workers: high-skill and low-skill. At the forefront of our analysis is the observation that

workers have the option of working either from their work-sites or from their homes.

The labour supplied from their work-sites (onsite labour) and the labour supplied from

their homes (remote labour) are imperfect substitutes. Moreover, the nature of work

in high-skill occupations makes onsite labour for high-skill workers far more substi-

tutable compared to low-skill workers.

Upon calibrating the model to India and experimenting with different containment

policies, we find that there is a clear trade-off between containment of infections and

its effect on economic activity. The policies that are most effective in reducing disease

transmission also inflicts the greatest economic loss. More importantly, we find that

every containment policy affects low-skill workers more adversely compared to high-
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skill workers on both economic and health front. Since every policy imposes restriction

on labour mobility and onsite labour is much less substitutable for low-skill workers,

these policies disproportionately impact the labour income of low-skill workers com-

pared to their high-skill counterparts. This worsens the already existing consumption

inequality between these two kinds of workers. On top of that, because low-skill work-

ers cannot afford to completely substitute towards remote labour, the containment

policies are less effective in reducing the spread of infections among low-skill workers.

To conclude, low-skill workers face an unequal burden on both economic and health

outcomes, with increased consumption inequality and higher incidence of infections

relative to high-skill workers.

There has been a number of recent papers analysing the impact of the pandemic

and containment measures on different economic and health outcomes. Atkeson (2020)

introduces the SIR model to economists and talks about the economic impact of COVID-

19 in the US. Eichenbaum et al. (2020) extends a canonical epidemiology model with a

general equilibrium framework to model the interaction between economic decisions

and the spread of infections. Farboodi et al. (2020) integrates individual optimization

decisions into an epidemiological model to study the social distancing outcomes in

the US. Glover et al. (2020) talks about the distributional effects of containment poli-

cies in the US where the individuals differ by age, sectors and health status. Kaplan

et al. (2020) also talks about substitutability of onsite and remote labour in a HANK

model and talks about the implications for US. Our paper attempts to study the impact

of containment policies on economic and health inequality in a developing economy,

India, which is characterized by a large fraction of low-skill workers whose ability to

supply remote labour is severely limited.

The rest of the paper is organized as follows. Section 2 describes the model and

derives the equilibrium conditions. Section 3 presents the calibration strategy while

the main results of the paper are discussed in section 4. Section 5 concludes.
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2. The Model

This section presents the economy before the start of the pandemic and follows it up

with the economy during the pandemic. In particular, we extend the model proposed

by Eichenbaum et al. (2020) to two types of workers (high-skill and low-skill) supplying

two types of labour (onsite and remote).

2.1 Pre-Pandemic Economy

The economy consists of a unit measure of workers out of which ψ fraction is high-skill

while 1 − ψ of them is low-skill. The workers, apart from choosing consumption, can

supply two different kinds of labour. The labour that is supplied at the work location

is called onsite labour (n) while working from home is called remote labour (n̂). On-

site and remote labour are imperfect substitutes, but more substitutable for high-skill

workers compared to low-skill workers.

Before the pandemic, the high-skill (and similarly low-skill) workers maximize their

lifetime utility

U j = u(cj, nj, n̂j) + βU j,

where cj refers to consumption of worker j(j = h, l), while nj and n̂j refers to the onsite

and remote labour respectively. The budget constraint of a worker is given by

(1 + µc)cj = wj
(

(1− µn)nj + ηjn̂j
)
.

Here wj denotes the wage of worker j. ηj represents the elasticity of substitution be-

tween onsite (njh) and remote (n̂j) labour. The total labour supplied by worker j is

given by (nj + ηjn̂j). In the event of a lockdown imposed during a pandemic, remote

labour becomes an integral part of labour supply as opposed to onsite labour in nor-

mal times. In this situation, the degree of substitutability between onsite and remote

work becomes integral to determine the effective labour supply.

As high-skill workers belong to occupations that can be more readily performed

from their homes compared to low-skill workers, any lockdown imposed to curtail the
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pandemic will disproportionately affect the economic well-being of low-skill workers

compared to high-skill workers. We calibrate the elasticities ηh and ηl to find that ηl is

much smaller than ηh in line with our prior expectations. The section on calibration

provides more details on this.

Following Eichenbaum et al. (2020), we model containment measures using taxes

on consumption (µc) and onsite labour (µn). Taxes on consumption and onsite labour

discourage people from heading out of their homes while incentivizing remote labour.

Assuming a utility function of u(cj, nj, n̂j) = log(cj) − θ
2
(nj)2 − θ̂

2
(n̂j)2, the first-order

conditions for worker j are:

nj =
wj(1− µn)

θcj(1 + µc)
,

n̂j =
wjηj

θ̂cj(1 + µc)
.

As can be seen from the above labour supply functions, µn acts as a deterrent for sup-

plying onsite labour while ηj captures the cost of remote labour due to imperfect sub-

stitutability.

There is a continuum of competitive firms who hire both high-skill (Lh) and low-

skill (Ll) workers to produce the consumption good (Y ). The firm maximizes its profit

Π = AL− whNh − wlN l,

where the firm combines high-skill and low-skill labour using a CES aggregator:

L = [γ1/δ(Lh)
δ−1
δ + (1− γ)1/δ(Ll)

δ−1
δ ]

δ
δ−1 .

Here γ captures the differences in productivity of high-skill and low-skill labour while

δ denotes the elasticity of substitution between them.

In equilibrium, total output must equal total consumption:

Y = AL = ψch + (1− ψ)cl.
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And finally, labour markets for both types of workers must clear:

Lh = ψ(nh + ηhn̂h),

Ll = (1− ψ)(nl + ηln̂l).

2.2 During Pandemic

Having developed the general equilibrium framework, we integrate it with the widely

used SIR (Susceptible, Infected, Recovered) model proposed by Kermack and McK-

endrick (1927). With the advent of a pandemic, the population can be divided into four

subgroups, namely susceptible (those who have not been infected), infected (those

who have the disease), recovered (those who have been treated of the disease) and de-

ceased (those who did not survive the infection). Both high-skill and low-skill workers

can be separated into these four groups. Let the number of high-skill workers in these

groups be Sht , I
h
t , R

h
t and Dh

t while the corresponding numbers for low-skill workers be

Slt, I
l
t , R

l
t andDl

t. Let T ht and T lt be the number of newly infected people at time t respec-

tively.

The susceptible population can get infected in three different ways. First channel is

through consumption. Susceptible people can meet infected people while purchasing

consumption goods, and this in turn, can lead to new infections. The number of newly

infected high-skill workers is given by πs1(Sht C
S,h
t )(ItC

I
t ) while that of low-skill workers

is given by πs1(SltC
S,l
t )(ItC

I
t ). Terms (Sht C

S,h
t ) and (SltC

S,l
t ) represent the total consump-

tion of high-skill and low-skill workers who are susceptible, while (ItC
I
t ) represents the

total consumption of all the infected people.1 πs1 denotes the probability of infection

through the consumption channel. As a susceptible person coming across an infected

person, there is a chance of getting infected irrespective of whether the infected indi-

vidual is high-skill or low-skill. Hence, the disease spread in both high and low-skill

sectors depends on the total consumption of the infected population (ItCt). But be-

cause the consumption patterns are different for high-skill and low-skill workers, the

disease incidence might also be different.

1Total consumption of all infected population is given by (ItC
I
t ) = Iht C

I,h
t + I ltC

I,l
t
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The second channel of transmission is through the interactions at place of work.

The number of newly infected high-skill workers through this channel is πs2(Sht N
S,h
t )(ItN

I
t )

and that of low-skill is πs2(SltN
S,l
t )(ItN

I
t ). The disease transmission does not depend on

the entire labour supply, but only on the time spent at the place of work. (Sht N
S,h
t ) and

(SltN
S,l
t ) represents the total hours of onsite labour supplied by susceptible high-skill

and low-skill workers respectively. As before, the transmission for high-skill and low-

skill workers depend on the total amount of onsite labour (ItN
I
t ) supplied by all the in-

fected workers.2 Because the low-skill workers belong to occupations that have a lower

flexibility for remote labour, they could be more vulnerable in the face of a pandemic.

The third channel is the transmission through random meetings of susceptible and

infected people other than consumption and labour channels. The number of newly

infected high-skill and low-skill workers through this channel are πs3Sht It and πs3SltIt re-

spectively. The total number of newly infected high-skill (T ht ) and low-skill (T lt ) workers

are then given by

T ht = πs1(S
h
t C

S,h
t )(ItC

I
t ) + πs2(S

h
t N

S,h
t )(ItN

I
t ) + πs3S

h
t It,

T lt = πs1(S
l
tC

S,l
t )(ItC

I
t ) + πs2(S

l
tN

S,l
t )(ItN

I
t ) + πs3S

l
tIt.

The infection rates among the high-skill (τht ) and low-skill (τ lt ) workers are defined as

τht = T ht /S
h
t and τ lt = T lt/S

l
t respectively. The evolution of the susceptible population

for both high and low skill workers are given by

Sht+1 = Sht − T ht ,

Slt+1 = Slt − T lt .

Upon getting infected, people can move out of the infection pool either because of

their recovery or death. Let πr and πd denote the probability of recovery and death

2Total onsite labour of all infected population is given by (ItN
I
t ) = Iht N

I,h
t + I ltN

I,l
t
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conditional on being infected. The evolution of the infected population is

Iht+1 = Iht + T ht − (πr + πd)I
h
t ,

I lt+1 = I lt + T lt − (πr + πd)I
l
t .

πrI
h
t and πrI

l
t refers to the total number of recovered high and low-skill workers while

πdI
h
t and πdI lt denotes the total number of people who die. The law of motion for recov-

ered people is given by

Rh
t+1 = Rh

t + πrI
h
t ,

Rl
t+1 = Rl

t + πrI
l
t ,

while that for the dead follows

Dh
t+1 = Dh

t + πdI
h
t ,

Dl
t+1 = Dl

t + πdI
l
t .

The population of high and low-skill workers evolves according to

popht+1 = popht − πdIht ,

poplt+1 = poplt − πdI lt .

At the initial period, we assume ε fraction of total population are infected. The total

number of high-skill and low-skill workers infected at period zero is

Ih0 = ψε, I l0 = (1− ψ)ε,

and the total susceptible population at the initial period is

Sh0 = ψ(1− ε), Sl0 = (1− ψ)(1− ε).

All agents in the economy take these laws of motion as given and make their economic
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decisions. We describe the decision problems of different agents below.

2.2.1 Susceptible People

High-skill (and similarly low-skill) susceptible workers choose their consumption, on-

site and remote labour to maximize their lifetime utility

U s,h
t = u(cs,ht , ns,ht , n̂s,ht ) + β

[
(1− τht )U s,h

t+1 + τht U
i,h
t+1

]
,

subject to the budget constraint

(1 + µct)c
s,h
t = wht

(
(1− µnt )ns,ht + ηhn̂s,ht

)
.

τht , the infection rate of high-skill workers, is given by

τht = πs1c
s,h
t (ItC

I
t ) + πs2n

s,h
t (ItN

I
t ) + πs3It.

Susceptible people take the aggregate consumption (ItCI
t ) and onsite labour (ItN I

t ) of

infected population as given while making their decisions. Assuming the flow utility

function as u(cs,ht , ns,ht , n̂s,ht ) = log(cs,ht ) − θ
2
(ns,ht )2 − θ̂

2
(n̂s,ht )2, the first order conditions

are:

1

cs,ht
− λs,bt (1 + µct) + λτt πs1(ItC

I
t ) = 0,

−θns,ht + λs,bt w
h
t (1− µnt ) + λτt πs2(ItN

I
t ) = 0,

−θ̂n̂s,ht + λs,bt w
h
t η

h = 0,

β[U i,h
t+1 − U

s,h
t+1] = λτt ,

where λs,bt and λτt denotes the Lagrange multipliers of budget constraint and infection

rate respectively. The optimization problem of a low-skill worker is exactly analogous

to the above mentioned problem.



DASGUPTA AND MURALI 9

2.2.2 Infected People

A high-skill infected person maximizes

U i,h
t = u(ci,ht , n

i,h
t , n̂

i,h
t ) + β

[
(1− πr − πd)U i,h

t+1 + πrU
r,h
t+1

]
,

subject to the budget constraint

(1 + µct)c
i,h
t = wht

(
φ(1− µnt )ni,ht + ηhφ̂n̂i,ht

)
.

Parameters φ and φ̂ captures the loss in onsite and remote labour productivity due to

getting infected.3 Assuming the same utility function as before, the first order condi-

tions are

1

ci,ht
− λi,bt (1 + µct) = 0,

−θni,ht + λi,bt w
h
t φ(1− µnt ) = 0,

−θ̂n̂i,ht + λi,bt w
h
t φ̂η

h = 0.

where λi,bt is the Lagrange multiplier of the budget constraint.

2.2.3 Recovered People

A high-skill recovered person maximizes the lifetime utility

U r,h
t = u(cr,ht , nr,ht , n̂r,ht ) + βU r,h

t+1,

subject to the budget constraint

(1 + µct)c
r,h
t = wht

(
(1− µnt )nr,ht + ηhn̂r,ht

)
.

3One interpretation is that a fraction φ (φ̂) of the infected individuals are too sick to provide onsite
(remote) labour.
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The first order conditions are given by

1

cr,ht
− λr,bt (1 + µct) = 0,

−θnr,ht + λr,bt w
h
t (1− µnt ) = 0,

−θ̂n̂r,ht + λr,bt w
h
t η

h = 0.

with λr,bt being the Lagrange multiplier of the budget constraint.

2.2.4 Market Clearing

In equilibrium, both goods and labour markets clear as follows.

Labour Market:

Sht (ns,ht + ηhn̂s,ht ) + Iht (φni,ht + ηhφ̂n̂i,ht ) +Rh
t (nr,ht + ηhn̂r,ht ) = Lht ,

Slt(n
s,l
t + ηln̂s,lt ) + I lt(φn

i,l
t + ηlφ̂n̂i,lt ) +Rl

t(n
r,l
t + ηln̂r,lt ) = Llt,[

γ1/δ(Lht )
δ−1
δ + (1− γ)1/δ(Llt)

δ−1
δ

] δ
δ−1

= Lt.

Goods Market:

Sht c
s,h
t + Iht c

i,h
t +Rh

t c
r,h
t = Ch

t ,

Sltc
s,l
t + I ltc

i,l
t +Rl

tc
r,l
t = C l

t,

Ch
t + C l

t = ALt.

3. Calibration

In this section, we discuss the calibration of all the parameters of the model. We have

two sets of parameters: (1) economic and (2) disease. The first set consists of the share

of high-skill occupations, ψ, the elasticity of substitution between onsite and remote

labour for both high-skill and low-skill occupations, ηh and ηl, the high-skill occupa-
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tion productivity premium, γ, the elasticity of substitution between high and low-skill

occupations, δ, the productivity of infected people when providing market and remote

labour, φ and φ̂, the dis-utility of onsite and market labour, θ and θ̂, the discount factor,

β, and the economy-wide TFP, A. The second set consists of the probability of recov-

ery, πr, the probability of death, πd, the transmission probabilities from consumption,

market labour and social interactions, π1, π2 and π3, and the initial share of infected

individuals in the economy, ε.

3.1 Economic parameters

Determination of ψ, ηh, ηl: The National Classification of Occupation - 2015 (NOC-

2015) considers nine broad occupation categories and associates a skill level with each

of these occupations. In this classification, an “occupation” is a set of jobs with simi-

lar tasks while “skill” is the ability to carry out those tasks.4 NCO-2015 categorises four

skill levels based on formal and informal education levels. These are (i) Primary educa-

tion (upto 10 years of formal education and/or informal skill), (ii) Secondary education

(11-13 years of formal education), (iii) First university degree (14-15 years of formal ed-

ucation), and (iv) Post-graduate university degree (more than 15 years of formal edu-

cation). The occupations and the associated skill levels are presented in Table 1. We

group the two highest skill levels into a high-skill (h) category, and the rest to a low-skill

(l) category. Accordingly, occupation codes 1 - 3 in Table 1 correspond to high-skill oc-

cupations while codes 4-5 and 7-9 correspond to low-skill occupations. The share of

high-skill occupations, ψ, comes out to be 20 percent.

In Table 1, we also report η for each occupation. This is the reduction in effective

labour supply when a high-skill (low-skill) worker substitutes one unit of onsite labour

with one unit of remote labour. We obtain an estimate of this parameter from Saltiel

(2020). In a recent paper, Saltiel computes the share of workers in different occupa-

tions who can work remotely. He looks at 10 developing countries and finds that these

“remote work” shares are surprisingly stable across countries. Accordingly, we use the

4https://www.ncs.gov.in/Documents/National%20Classification%20of%20Occupations%20 Vol%
20II-A-%202015.pdf

https://www.ncs.gov.in/Documents/National%20Classification%20of%20Occupations%20_Vol%20II-A-%202015.pdf
https://www.ncs.gov.in/Documents/National%20Classification%20of%20Occupations%20_Vol%20II-A-%202015.pdf
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Table 1: Occupations and Skills

NOC codes Title Skill Share η

1 Legislators, Senior Officials, and Managers IV 0.102 0.34

2 Professionals IV 0.052 0.34

3 Associate Professionals III 0.046 0.27

4 Clerks II 0.032 0.42

5 Service Workers and Sales Workers II 0.112 0.06

7 Craft and Related Trades Workers II 0.184 0.03

8 Plant and Machine Operators and Assemblers II 0.072 0.00

9 Elementary Occupations I 0.400 0.02

Note: The NOC codes refer to divisions, the most aggregated categories. The skill levels are I: Pri-

mary Education, II: Secondary Education, III: First University Degree, IV: Post-Graduate University

Degree. The skill classification for division 1 in NOC-15 is actually not defined because of the large

variation in tasks of these occupations. We assign it the highest skill level, but perform robustness

with respect to the assignment. Division 6 (Skilled Agricultural and Fishery Workers) has been ex-

cluded from the analysis. Share refers to the share of the occupation in the total workforce. η is the

share of individuals in an occupation who can work remotely.

Source: National Sample Survey (NSS) 2011-12 for occupation shares, Government of India’s Min-

istry of Labour and Employment for NOC codes and associated skills, Saltiel (2020) for remote work

shares.

average value of the remote work shares in Saltiel (2020) as our measure of η.5 The oc-

cupations he looks at are the same as the NOC occupations that we consider, allowing

a simple mapping between his and our measures. Using the occupation weights then

gives us ηh = 0.32 and ηl = 0.04.

Determination of γ: γ has implications for the relative wage between high and low skill

workers. We calibrate γ to match a pre-pandemic wage ratio (wh/wl) of 4.34.6

5Our reasoning is as follows: Suppose only a fraction η of individuals in any occupation can work
remotely. Then if aggregate supply of onsite labour is 1 (normalized), the aggregate supply of remote
labour is simply η. Hence, one unit of onsite labour is equivalent to η units of remote labour.

6Based on International Labour Organization’s India Wage Report (2018).
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Determination of δ: We set δ = 1.03, which is the elasticity of substitution between

regular and contract workers in India (Basu et al. (2016)).

Determination of θ, θ̂: We set θ = θ̂ = 0.034 to target a pre-pandemic daily labour

supply of 5 hours of onsite work and around 1.5 hours of remote work for high-skill

workers.

Determination of φ, φ̂: We set φ = φ̂ = 0.8. The argument is that a certain proportion of

infected workers will be too sick to work. This proportion could, of course, be different

for onsite and remote work.

Determination ofβ andA: Following Eichenbaum et al. (2020), we choose β = (0.96)1/365

to reflect the daily calibration. We also set A = 57.7 to target a pre-pandemic average

daily wage of Rs 235.

3.2 Disease parameters

Value for πr, πd : In every period, a fraction of the infected individuals change status,

i.e., they either recover or die. We refer to them as “closed” cases. The probability that

an infected person dies in a period, πd, is then given by

πd = m× Pr(closed),

wherem, the mortality rate, measures the fraction of closed cases who have died, while

Pr(closed) is the probability of a case getting closed.

Evidence from China (WHO, 2020) suggests that for Covid-19, it takes about 2 weeks

on average from onset to clinical recovery for mild cases, while the corresponding

number for patients with severe or critical disease is 4.5 weeks. The same report sug-

gests that among the people who were found to be infected, around 80 percent exhib-

ited mild to moderate symptoms. So, the expected time taken by an infected individual

to recover is 2.5 weeks or roughly 18 days. Assuming that 18 days is also the expected

time taken by an infected individual to die (the range is 2-6 weeks), the probability of a

case closing in one day is 1/18.
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Computing, m, the mortality rate poses some challenges. If the pandemic ends at

period T , the mortality rate is measured by DT/IT , because the number of infections

will eventually be equal to the number of closed cases. There are, however, two prob-

lems with this measure, one of which leads to a downward bias while the other one

leads to an upward bias. To illustrate the first problem, suppose we had data on a his-

torical pandemic episode. Because we are looking at a historical episode, it would be

safe to assume that every infected individual either recovered or died. Then the mor-

tality rate would simply be the number of final deaths divided by the total number of

infected. During an ongoing pandemic, we cannot make this assumption. So, even if

there are no new infections, in which case the number of infections necessarily equals

the number of closed cases, the number of deaths could still go up. Accordingly, the

mortality measure could be biased downward.

Figure 1: Positive cases and testing for Covid-19 in a cross-section of countries

Note: Figures are current as of 12th April, 2020.

Source: www.worldometers.info

A more serious problem with looking at the ratio of deaths to infected is that the

latter value could be an under-estimate of the true value. This is because not every in-

fected individual gets tested. In fact, the infection rate (infected/population) is strongly
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correlated with the testing rate (tests/population) as Figure 1 suggests. We can under-

stand this problem as follows. The total number of infected individuals at time t (ig-

noring high versus low-skilled) can be written as

It = I testt + Inotestt ,

where I testt and Inotestt denote the number of infected individuals who have been tested

and not tested respectively. We can re-write the above equation as

It =
1

1− a
I testt ,

where a = Inotestt /It is the ratio of infected individuals who do not get tested. Of course,

we do not know the value of a. But we might be able to offer an educated guess. One

assumption is that because testing is a choice, infected individuals who are asymp-

tomatic are more likely to not get tested. In that case, one way to approximate a is to

use the asymptomatic rate. Preliminary studies suggest that the percentage of people

with asymptomatic or mild symptoms is around 80 percent.7 In India, there is reason

to believe that this number could be higher due to the unavailability of test kits, at least

in the early stages of the pandemic.8 In light of these considerations, we choose a value

of a equal to 0.9. As of 12th April, I testt = 9,100 and D = 300. With a = 0.9, It = 91,000.

The mortality rate is then equal to 0.33 percent.9 Accordingly,

πd = 0.0033× 1/18 = 0.0002,

and

πr = 1/18− πd = 0.0553.

Value for πs1, πs1, πs3 : In a standard SIR model, susceptible people get infected when

they come in contact with infected people. The number of new infections in the pop-

7https://www.ecdc.europa.eu/en/current-risk-assessment-novel-coronavirus-situation
8https://www.indiatoday.in/mail-today/story/coronavirus-shortage-of-kits-leads-to-delays-in-testing-1667041-2020-04-15
9Evidence from some of the most affected countries suggests that the mortality rate varies across age

groups, with older populations displaying higher mortality rates.

https://www.ecdc.europa.eu/en/current-risk-assessment-novel-coronavirus-situation
https://www.indiatoday.in/mail-today/story/coronavirus-shortage-of-kits-leads-to-delays-in-testing-1667041-2020-04-15
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ulation through such “social” interactions can be written as

Tt = χ(St/P )It,

where χ is the transmission rate and P is the total population. χ measures the ex-

pected number of individuals who can get infected in time t by someone who is al-

ready infected. Observe that out of these χ individuals, only a fraction (St/P ) will be

new infections (assuming that infected individuals come in contact with other individ-

uals randomly). Hence, the expected number of new infections created by an existing

infected individual is χ(St/P ). Multiplying by It, we get the total number of new infec-

tions. χ/P is known as the transmission probability.

In this paper, we assume that the transmission probabilities due to consumption,

work and social interactions add up to χ/P . To get a value for χ, one can use the fol-

lowing relation:

R0 = χ/(πr + πd),

where R0, the basic reproduction number, is the expected number of individuals who

will be infected by a single infected individual over the course of the disease.10 There

are a number of studies looking at the R0 for Covid-19 (Wang et al., 2020). We use

R0 = 2.2, which is in the mid-range of R0 across these studies. Because P has been

normalized to one, this gives us χ/P = 2.5 × 0.0555 ≈ 0.14. At the beginning of a

pandemic, we then have

πs1 × C2 + πs2 ×N2 + πs3 = 0.14,

where C and N are the pre-pandemic equilibrium values for consumption and onsite

labour respectively. How do we allocate the transmission probability across the dif-

ferent ways individuals can get infected? One possibility is to look at how much time

Indians spend on different activities. Time-Use Survey data (1999) suggests that an av-

erage Indian spends 68 hours outside home. Out of these, around 35 hours are spent

on work, 2 hours are spent on consumption-related market activities and the rest on

10R0 = χ+ (1− πr − πd)χ+ (1− πr − πd)2χ+ ....
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activities that could lead to social interactions. It follows that

πs1 × C2

πs1 × C2 + πs2 ×N2 + πs3
=

2

68
,

and
πs1 ×N2

πs1 × C2 + πs2 ×N2 + πs3
=

35

68
.

Solving, we have π1 = 6.5× 10−8, π2 = 0.0023 and π3 = 0.0557.

Value for ε : We assume that initially, a fraction 10−6 of the population was infected

(this amounts to 1,300 individuals).

4. Results

In this section, we present and discuss the economic and health impacts of the spread

of COVID-19. We measure the economic impact using aggregate output and consump-

tion inequality between high-skill and low-skill workers. Consumption inequality is

captured using relative consumption of high-skill with respect to low-skill workers (Ch
t /C

l
t).

We use peak infection rate and also growth rate of infections till the peak to measure

health effects. Peak infection rates captures the maximum stress that the healthcare

services might come under while the days to double measures the speed at which the

infection transmits through the economy. We start with the benchmark case of no pol-

icy intervention and follow it up by discussing different containment policies and its

effect on economic and health outcomes.

4.1 Benchmark (No Containment)

Figure 2 shows the propagation of the disease for both high and low skill workers un-

der no policy intervention. Our simulations show that the infections peak on day 218

when around 15.5% of initial population will be infected imposing massive stress on

the health facilities. The average daily growth rate of infections from day 100 till the

day infections peak is 4.94%, which translates to infections doubling every 14.4 days.
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Eventually around 78.7% of the population gets infected by this pandemic.

The economic impact of the pandemic can be seen in figure 3. The total loss of ag-

gregate output during the peak infection period is around 5.41%. As can be seen from

the figure, both high and low skill workers realize the risk of infection from onsite work

and substitute towards more remote work. The disease transmission being similar for

both high and low skill workers in our setup, there is a very small effect on consump-

tion inequality, with inequality slightly reducing during the peak infection days. But

as we show in the next section, the various containment policies implemented to re-

duce the spread of infection can adversely affect low-skill consumption compared to

high-skill consumption and hence worsen the already existing inequality.

4.2 Containment Policies

We now introduce four different containment policies measured by taxation on on-

site labour (µn) as shown in figure 4 and analyse their impact on various economic

and health outcomes. In the first policy called sustained containment, the government

imposes a severe lockdown with a tax rate of 80% for a sustained period of 300 days.

The second policy called staggered containment starts with a severe lockdown for 75

days followed by gradual easing every 75 days thereafter. The third policy called in-

termittent containment is similar to the first policy, except that the government allows

intermittent relaxation of the lockdown. Finally, smooth containment is a policy where

the containment closely follows the evolution of infections in the economy with the tax

rate peaking at 80% on the day of peak infections.

The evolution of various economic and health outcomes resulting from sustained,

staggered, intermittent and smooth containment policies are shown in figures 5, 6, 7

and 8 respectively. We measure the economic impact of various containment policies

by measuring changes in aggregate output and consumption inequality. Total decline

in aggregate output is measured as the percentage change with respect to the initial

steady state over a period of 300 days (from day 101 to 400) when the containment

policies are implemented.

Table 2 shows the simulated economic and health indicators across different con-
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Table 2: Containment Policies

Policy
Loss of
Output

(%)

Consumption
Inequality

Peak Infection (%) Days to Double

High Skill Low Skill High Skill Low Skill

Benchmark 5.41 1.14 15.31 15.81 14.40 14.37

Sustained 20.97 2.83 9.30 12.78 19.19 17.86

Staggered 10.37 1.65 12.37 14.29 17.54 17.01

Intermittent 19.28 2.67 9.23 12.89 18.65 17.45

Smooth 8.04 1.38 11.39 14.39 14.16 14.49

Note: Loss of output refers to the total decline in aggregate output as a percentage of initial steady state

over the period of 300 days (from day 101 to 400) when the containment policies are implemented. Con-

sumption inequality measures the average relative consumption over the same period. Peak infection

reports the maximum infection as a percentage of initial population for both high and low skill workers.

Days to double measures the average number of days it takes for the infections to double. Average is

calculated from day 100 to the day infection peaks.

tainment policies. The number of people infected, without any policy intervention

doubles every 14.4 days on average and causes around 5.4% decline in aggregate out-

put. Out of the different policies considered, sustained lockdown generates the best

gains on health front lowering the peak infection rates by around 6% for high skill work-

ers and 3% for low skill workers. It also slows down the spread of disease by increasing

the time it takes to double from 14.4 days to 19.2 days for high-skill and 17.9 days for

low skill workers respectively. This policy also imposes the maximum cost on the eco-

nomic front with aggregate output falling by about 21% and consumption inequality

jumping to 2.83 on average from 1.14 in the benchmark case. Intermittent lockdown is

slightly less costly on the economic front compared to the sustained containment, but

it is also not as effective in containing the spread of the pandemic.

Staggered containment slows the spread of the disease by increasing the doubling

time from 14.4 days to around 17.5 days for high-skill and 17 days for low-skill work-

ers. But it is not very effective in reducing the peak infection rates. But the policy of

staggered containment imposes relatively less strain on the country’s economy with

aggregate output falling by 10.37% and average inequality increasing modestly to 1.65.
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Smooth containment inflicts minimum damage on the country’s economy but it is not

effective in slowing down the spread of infections.

While analysing the effects of different containment policies, two clear observations

emerge. First, there is a clear trade-off between containing the infections and its ef-

fect on economic activity. Sustained lockdown, which is most effective in containing

the pandemic, is also the most costly in terms of lost output. Similarly, smooth con-

tainment, which is relatively cheaper to implement, is not as effective in checking the

disease spread.

Second, the low-skill workers are disproportionately affected on both economic

and health outcomes compared to high-skill workers. As all containment measures im-

pose a massive cost on onsite labour, both high-skill and low-skill workers substitute

towards more remote work. But because onsite labour is significantly less substitutable

in low skill compared to high skill occupations, the low-skill workers are adversely af-

fected by containment policies compared to high-skill workers. This worsens the al-

ready existing inequality, more than doubling it in cases of sustained and intermittent

containment. Because the low-skill workers optimally choose to provide more onsite

labour, the containment policies are also less effective on low-skill workers leading to

a higher incidence of infections. As can be seen, the sustained containment brings

down the peak infection rates from 14.4% to 9.30% for high-skill but only to 12.78% for

low-skill workers. Therefore in our setup, low-skill workers face an excessive burden on

both economic and health fronts, with increased consumption inequality and higher

incidence of infections compared to high-skill workers.

5. Conclusion

We integrate a standard epidemiological model within a general equilibrium frame-

work to study the effect of pandemic and containment on high-skill and low-skill work-

ers. We show that the different containment policies impose disproportionate eco-

nomic costs on low-skill workers, thus worsening the already existing consumption in-

equality in the economy. On top of that, because low-skill workers do not have the lux-
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ury to shift to work-from-home, the incidence of infections is also much higher com-

pared to high-skill workers. A well designed transfer policy aimed at low-skill work-

ers might help in reducing this disparity by discouraging them from venturing out for

work. We plan to take up this important issue in future work.
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(a) Susceptibles (b) Infected

(c) Recovered (d) Deceased

Figure 2: Disease Dynamics under No Policy
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(a) Aggregate Output (b) Consumption Inequality

(c) Onsite Labour (d) Remote Labour

Figure 3: Economic Impact under No Policy
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(a) Sustained Containment (b) Staggered Containment

(c) Intermittent Containment (d) Smooth Containment

Figure 4: Containment Policies
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(a) Aggregate Output (b) Consumption Inequality

(c) Onsite Labour (d) Remote Labour

(e) High Skill Infections (f) Low Skill Infections

Figure 5: Sustained Containment
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(a) Aggregate Output (b) Consumption Inequality

(c) Onsite Labour (d) Remote Labour

(e) High Skill Infections (f) Low Skill Infections

Figure 6: Staggered Containment
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(a) Aggregate Output (b) Consumption Inequality

(c) Onsite Labour (d) Remote Labour

(e) High Skill Infections (f) Low Skill Infections

Figure 7: Intermittent Containment
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(a) Aggregate Output (b) Consumption Inequality

(c) Onsite Labour (d) Remote Labour

(e) High Skill Infections (f) Low Skill Infections

Figure 8: Smooth Containment


