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Abstract

One of the most important bottlenecks in writing elaborate dynamic economic models is

the curse of dimensionality. It has been shown that stochastic simulation framework helps

in relaxing this curse. I develop an algorithm using this framework and demonstrate its

scalability and robustness by solving a multi-country business cycle model with 12 continuous

state variables. I also extend this algorithm for solving discrete choice dynamic programming

problems by attempting to solve Khan and Thomas (2003) lumpy investment model and

Arellano (2008) sovereign default model.

JEL Classification: C63,C68.

1 Introduction

We assume economic agents have expectations on their future and model their decision making

as a dynamic optimization problem. Even though dynamic economic models are the mainstay

of macroeconomic research, it is a rarity that these dynamic programming problems have an-

alytical solutions. Hence, we have to resort to algorithms to solve these models numerically.

One of the major bottlenecks faced by researchers in numerically solving these problems is the

curse of dimensionality - computational time or memory required to solve a problem increases

exponentially in the number of dimensions of the state space.

∗I am grateful to Aubhik Khan, Julia Thomas and Jaromir Nosal for helpful comments and advice. I also

thank the participants at Khan-Thomas Workshop and macro lunch for their suggestions.
†The Ohio State University; murali.20@osu.edu
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Approximate Dynamic Programming(ADP) is a framework developed primarily in the fields

of engineering and operations research to tackle the problem of curse of dimensionality. This

literature attempts to find approximate solutions to high dimensional problems by employing

stochastic simulation and learning algorithms. Bertsekas and Tsitsiklis (1996) gave the first

theoretical foundations for this approach, while Van Roy et al. (1997) was the first application

of an ADP algorithm to a real world problem. This paper attempted to solve a retail optimiza-

tion problem with 33 state variables. Powell (2011) and Buşoniu et al. (2010) collate different

applications and practical issues in applying these algorithms in the fields of operations research

and reinforcement learning respectively.

Stochastic simulation based methods are not new to economics literature. Parameterized

expectations approach introduced in Marcet (1991) and Den Haan and Marcet (1990) solves

for the equilibrium quantities by approximating the conditional expectation of euler equations

using exponentiated polynomials and using simulations and nonlinear regression to update the

approximation1. Judd et al. (2011) also uses euler equation as the basis for simulation, but

parameterizes policy function instead of conditional expectations. This paper also documents

various regularization techniques that can be employed to stabilize the stochastic simulation

framework. Arellano et al. (2014) uses envelope condition as the basis for their solution algorithm

instead of euler equations.

The solution method in this paper uses the dynamic programming approach by parameteriz-

ing the continuation value of the functional equation and uses stochastic simulation methods to

update the approximation2. I apply this method to solve the lumpy investment model of Khan

and Thomas (2003) where firms face a nontrivial discrete choice problem. Even though the value

function of this model is not smooth, my method can still be used because the continuation value

is a smooth function. I also use this algorithm to solve a multi-country business cycle model

with 12 continuous states. The results show that, the algorithm performs very well in higher

dimensions both in terms of computational time and accuracy. Finally, I apply this algorithm

to a sovereign default model of Arellano (2008) whose value function and continuation value are

not smooth.

1Heterogeneous agent models like Krusell et al. (1998) and Khan and Thomas (2003) uses stochastic simulation

to obtain the aggregate law of motion consistent with the already solved value function.
2Hull (2015) also uses stochastic simulations in a dynamic programming setting, but restricts the states and

the chosen controls to a pre-specified grid, which is not the case in my algorithm.
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The rest of the paper is organized as follows: In section 2, I introduce a generic dynamic

optimization problem. Section 3 states the baseline algorithm used in this paper. Section 4

applies the algorithm to solve a neoclassical growth model, multi-country business cycle model,

lumpy investment model and the sovereign default model. In section 5, I conclude.

2 A Dynamic Optimization Problem

Let xt denote the vector of endogenous state variables while zt be the vector of exogenous state

variables at period t. The economic agent at any period t, after observing {xt, zt} maximizes

his/her instantaneous utility F (xt, xt+1, zt) and discounted future lifetime utility by choosing

the next period’s endogenous state vector xt+1 subject to the constraint that xt+1 lies in the set

Γ(xt, zt).

v(xt, zt) = max
xt+1∈Γ(xt,zt)

(
F (xt, xt+1, zt) + β

∫
v(xt+1, zt+1)Q(zt, dzt+1)

)
(1)

where v represents the optimal value of the lifetime utility, β the discount factor used by the

agent to discount the future utility and Q is the probability distribution of tomorrow’s exogenous

state zt+1 conditional on today’s state zt.

The policy function g(xt, zt) gives the optimal choice of xt+1 given the current period’s state

variables {xt, zt}.

g(xt, zt) = arg max
xt+1∈Γ(xt,zt)

(
F (xt, xt+1, zt) + β

∫
v(xt+1, zt+1)Q(zt, dzt+1)

)
(2)

Before proceeding further, let us define continuation value of the above problem. The con-

tinuation value at the end of period t−1 (represented as vu(xt, zt−1)), is defined as the expected

value of being in the state (xt, zt) where the expectation is taken over the unobserved zt condi-

tional on the current exogenous state zt−1.

vu(xt, zt−1) =

∫
v(xt, zt)Q(zt−1, dzt) (3)

We can reformulate the original optimization problem (1) in terms of the continuation value as
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follows.

vu(xt, zt−1) =

∫
v(xt, zt)Q(zt−1, dzt)

=

∫ [
max

xt+1∈Γ(xt,zt)
(F (xt, xt+1, zt) + βvu(xt+1, zt))

]
Q(zt−1, dzt)

(4)

The corresponding policy function is given by

g(xt, zt) = arg max
xt+1∈Γ(xt,zt)

(F (xt, xt+1, zt) + βvu(xt+1, zt)) (5)

For the baseline algorithm, I use the above formulation of the problem in terms of the con-

tinuation value. The advantage of this formulation is, the policy function no longer has any

expectation operator and hence analytical methods can be used to solve for the policy once we

assume a suitable functional form for the continuation value.

3 The Algorithm

This algorithm combines the traditional value function iteration and simulation methods to solve

the problem defined in the previous section. We start with an initial functional approximation

for the continuation value and initial values for the exogenous and endogenous states. Simulate

the exogenous state for a finite number of periods. We then simulate the model using the policy

function (equation (5)) to obtain the next period’s endogenous state given the current period’s

state and the continuation value. Continue this simulation till we obtain sufficient data points

to update the estimate of the implied continuation value. The procedure continues until there

is no change in the functional approximation across iterations. Formally,

• Assume a functional form for continuation value(vu) and the corresponding coefficients(θv).

• Given the initial exogenous state(z0), simulate the realizations {zt}Tt=1 for T periods.

• While (θv doesn’t converge)

– for t = 1 to T

∗ Obtain xt = g(xt−1, zt−1) using (5).

∗ Calculate the continuation value (vut ) at the state (xt, zt−1) from (4).
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– End for

– Regress {vu}Tt=1 on {xt, zt−1}Tt=1 to obtain the updated coefficients θ̂v.

– New coefficient (θv) = (1− η)θv + ηθ̂v.

• End while

The algorithm dynamically determines the region of state space in which the solution lies

and solves for the continuation value and the policy function in that region. This obviates the

need to define a region of approximation prior to the start of the algorithm which is common

in other classes of solution methods. This algorithm employs regression techniques to estimate

the continuation value compared to the more common interpolation techniques used by the grid

based solution methods.

In the next section, we will show how this algorithm can be used to solve a wide variety of

dynamic economic models along with the performance of the algorithm in different applications.

All models are solved using MATLAB R2014a in my laptop with Intel(R) Core(TM) i5-4200

CPU (1.6 GHz) and 8GB RAM.

4 Applications

4.1 Neoclassical Growth Model

The first application is the workhorse model of macroeconomic research. This model has a

representative agent whose objective is to maximize his expected discounted utility over an

infinite lifetime. At the start of each period, the agent observes the realization of productivity(zt)

and capital(kt) and decides how much to consume and save in order to achieve his goal. The

production next period is determined by his savings this period which in turn will affect his

consumption and savings next period.
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v(zt, kt) = max
ct,kt+1

(
c1−σ
t − 1

1− σ
+ βE[v(zt+1, kt+1)|zt]

)
subject to

ct + kt+1 ≤ ztk
α
t + (1− δ)kt

ct ≥ 0, kt+1 ≥ 0

zt+1 = zρt e
εt+1 , εt+1 ∼ N(0, σ2

ε )

z0,k0 given (6)

We can rewrite the model in terms of continuation value(vu) as follows:

vu(zt−1, kt) = E

[
max
ct,kt+1

(
c1−σ
t − 1

1− σ
+ βvu(zt, kt+1)

)∣∣∣∣ zt−1

]
subject to

ct + kt+1 ≤ ztk
α
t + (1− δ)kt

ct ≥ 0, kt+1 ≥ 0

zt = zρt−1e
εt , εt ∼ N(0, σ2

ε )

z0,k0 given (7)

The policy function for the model can be given by:

g(zt, kt) = arg max
kt+1∈[0,ztkαt +(1−δ)kt]

(
(ztk

α
t + (1− δ)kt − kt+1)1−σ − 1

1− σ
+ βvu(zt, kt+1)

)
(8)

For this exercise, I approximate the continuation value with a complete cubic polynomial of the

state variables z and k.

vu(zt−1, kt) = θ1+θ2zt−1+θ3z
2
t−1+θ4z

3
t−1+θ5kt+θ6k

2
t +θ7k

3
t +θ8zt−1kt+θ9z

2
t−1kt+θ10zt−1k

2
t (9)

By substituting (9) into (8), and under the assumption of σ being 2, we can characterize the

policy function with the following equation:

ak4
t+1 + (b− 2ad)k3

t+1 + (ad2 − 2bd+ c)k2
t+1 + (bd2 − 2cd)kt+1 + cd2 − 1

β
= 0 (10)

where a, b, c and d are functions of current states and approximation coefficients. In this case the

policy function is given by a fourth order polynomial in kt+1 and I calculate the eigenvalues of

6



Parameters Values Meaning

α 0.36 Curvature of the production function

δ 0.069 Depreciation rate of capital

σ 2 Coefficient of relative risk aversion

β 0.96 Discount rate

ρ 0.859 Persistence of productivity process

σε 0.014 Standard deviation of shocks to productivity

kss 6.3161 Steady-state capital

T 1000 Length of each simulation

η 0.3 Learning rate

Table 1: Neoclassical Growth Model - Parameters

Algorithm Run Time(secs) Max. Error Avg. Error

Grid 20 8.2998e-05 3.8346e-06

Simulation 225 2.8890e-04 3.6176e-05

Table 2: Neoclassical Growth Model - Performance

the companion matrix to solve for kt+1. Armed with this policy function, we use the algorithm

from the previous section to solve the growth model.

Table 1 lists the parameter values that have been used to solve this model. All the parameter

values are pretty standard except for the algorithm specific parameters. T is the total number

of periods the model is simulated in each iteration and is set to 1000. I have tried multiple

values while this number gives higher stability and accuracy. The other parameter η is the rate

at which the algorithm learns about the new coefficient. Higher the learning rate, the faster is

the rate of convergence of the algorithm but lesser is its stability. I find 0.3 to be the highest

value of η that guarantees convergence of the algorithm for this model.

The performance of this algorithm is compared to a value function iteration algorithm where

the value function is represented on a grid of z and k. The space of productivity realization is

discretized into Nz (here, 5) states by employing Tauchen (1986) while the space of capital k

is discretized linearly into Nk (here, 11) states. The value function is represented on a grid of

Nz ×Nk while the continuation value is interpolated using piecewise polynomial cubic splines.

Table 2 gives the runtime and the euler equation error statistics of the simulation based
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Algorithm Productivity Capital Consumption Output Investment

Mean

Grid 0.9995 6.3133 1.5046 1.9403 0.4357

Simulation 0.9996 6.3154 1.5050 1.9407 0.4357

Standard Deviation

Grid 0.0274 0.0052 0.0057 0.0136 0.0421

Simulation 0.0275 0.0051 0.0056 0.0133 0.0409

standard deviation of log data HP filtered with parameter value of 100.

Table 3: Neoclassical Growth Model - Business Cycle Moments

algorithm and the benchmark algorithm. The grid based algorithm does a much better job both

in terms of accuracy and runtime. It is understandable because simulation based algorithms are

inherently costly as we need to simulate a lot of datapoints to achieve accuracy and stability.

So we need a bigger model to completely leverage the true potential of this algorithm, which is

where we turn to next. Before we turn to the next application, table 3 compares the business

cycle moments implied by both the algorithms. As seen from the table, both the algorithms

generate statistics that are very close to each other.

4.2 Multi-Country Real Business Cycle Model

This is one of the models studied in the February 2011’s Journal of Economic Dynamics and

Control(JEDC) computational suite project comparing different solution methods. Haan et al.

(2011) provides more details on this model. It is a multi-country extension of the model solved in

the previous section. In this model, there are N countries each facing both idiosyncratic shocks

(shocks that are specific to a particular country) and an aggregate shock (shock that is common

to all the countries). There is a global planner whose objective is to maximize the weighted

average of utility of N countries. The planner observes the productivity realization and capital

level of each country at the start of a period and decides the consumption and savings of each

country to achieve her objective.

v(zt, kt) = max
{cj,t,kj,t+1}Nj=1

 N∑
j=1

τjlog(cj,t) + βE[v(zt+1, kt+1)|zt]
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subject to
N∑
j=1

(
cj,t + kj,t+1 +

φ

2

(kj,t+1 − kj,t)2

kj,t

)
=

N∑
j=1

(Azj,t(kj,t)
α + kj,t)

logzj,t = ρlogzj,t−1 + σ(et + ej,t); et, ej,t ∼ N(0, 1)

zt = {zj,t}Nj=1; kt = {kj,t}Nj=1

The state vector of the model consists of productivity realizations and capital stock of N

countries. The productivities of the countries are correlated with each other and each country is

subjected to a quadratic capital adjustment cost. This cost is important for our purpose because

the adjustment cost forces the planner’s decision to be dependent on the entire distribution of

capital and productivity realizations across the world, instead of just the aggregate levels of

capital and productivity.

As before, let us reformulate the above problem in terms of the continuation value. Let

vu(zt−1, kt) represent the continuation value of the planner’s problem at period t− 1.

vu(zt−1, kt) = E

 max
{cj,t,kj,t+1}Nj=1

 N∑
j=1

τjlog(cj,t) + βvu(zt, kt+1)

∣∣∣∣∣∣ zt−1


subject to

N∑
j=1

(
cj,t + kj,t+1 +

φ

2

(kj,t+1 − kj,t)2

kj,t

)
=

N∑
j=1

(Azj,t(kj,t)
α + kj,t)

logzj,t = ρlogzj,t−1 + σ(et + ej,t); et, ej,t ∼ N(0, 1)

zt = {zj,t}Nj=1; kt = {kj,t}Nj=1

Let g represent the policy correspondence associated with this model. It gives the vector of

next period’s capital stock {kj,t+1}Nj=1 given the current state {zt, kt}.

g(zt, kt) = arg max
{cj,t,kj,t+1}Nj=1

 N∑
j=1

τjlog(cj,t) + βvu(zt, kt+1)

 (11)

With a suitable parametric approximation of the continuation value, we can solve the model

using the algorithm introduced before. Before we go into the exact details of solving the model,

let us discuss how the policy correspondence looks when N is 2. This restriction makes the

discussion easier and can be easily extended to N more than 2.
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The continuation value is approximated using a complete quadratic polynomial of the state

vector.

vu(zt−1, kt) = θ1 + θ2z1,t−1 + θ3z2,t−1 + θ4z
2
1,t−1 + θ5z

2
2,t−1+

θ6k1,t + θ7k2,t + θ8k
2
1,t + θ9k

2
2,t + θ10z1,t−1z2,t−1

+θ11k1,tk2,t + θ12z1,t−1k1,t + θ13z1,t−1k2,t + θ14z2,t−1k1,t+

θ15z2,t−1k2,t

(12)

Under this parameterization,the policy correspondence of a 2-country model can be given as

follows.

λtc1,t = τ1 (13)

λtc2,t = τ2 (14)

β(θ6 + 2θ8k1,t+1 + θ11k2,t+1 + θ12z1,t + θ14z2,t) = λt

[
1 + φ

k1,t+1 − k1,t

k1,t

]
(15)

β(θ7 + 2θ9k2,t+1 + θ11k1,t+1 + θ13z1,t + θ15z2,t) = λt

[
1 + φ

k2,t+1 − k2,t

k2,t

]
(16)

2∑
j=1

(
cj,t + kj,t+1 +

φ

2

(kj,t+1 − kj,t)2

kj,t

)
=

2∑
j=1

(Azj,t(kj,t)
α + kj,t) (17)

Thus the first order conditions of a 2-country model consists of 5 equations to solve for 5

unknowns {cj,t}2j=1,{kj,t+1}2j=1 and λt which is the Lagrange multiplier of the budget constraint.

In general, a N -country model will have 2N + 1 equations to solve for 2N + 1 unknowns. So,

even though it is possible to implement a value function iteration algorithm similar to the one

used to solve the neoclassical growth model, solving this system of nonlinear equations every

time to simulate the model can be very expensive. The cost increases rapidly as we increase the

size of the model by adding more countries.

So, a policy iteration version of the original algorithm is used to solve this model. In this

version, we explicitly parameterize the policy correspondence g(zt, kt). The parametric approx-

imation of the policy enables us to simulate the model at a very low cost. We update this

policy approximation over the iterations and the algorithm continues till the policy parameters

converge. This implementation of policy iteration algorithm follows from Buşoniu et al. (2010).

We start with an initial functional form for the policy and an initial value for the state

vector. Simulate the exogenous state vector for a finite period using the given law of motion.

With the assumed approximation for the policy, we can simulate the model forward to obtain the
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next period’s endogenous state. Once we simulate enough data points, we find the continuation

value (vu) implied by the current policy approximation. This step is called policy evaluation.

Once we obtain the implied continuation value, we can use this information to update the policy

approximation. This step is called policy improvement. We iterate on this procedure with the

updated policy until the policy approximation or the implied continuation value stops changing.

• Assume a functional form for the policy g and continuation value vu. Let the coefficient

vector be θg and θv respectively.

• Given the initial exogenous state z0, simulate the exogenous state realizations {zt}Tt=1 for

T periods.

• while (θv doesn’t converge)

– for t = 0 to T

∗ Obtain kt+1 = g(kt, zt)

– End for

– Policy Evaluation: Obtain the continuation value parameters(θv) implied by the pol-

icy g using {zt}Tt=1 and {kt}Tt=1.

– Policy Improvement: Update the coefficients of the policy(θg) using the continuation

value approximation(θv) to obtain the updated policy g.

• End while

Policy Evaluation3

• Start with an initial guess for θv.

• while (θv doesn’t converge)

– Calculate {vu(zt, kt+1)}Tt=1 using {zt}Tt=1, {kt}Tt=1 and current approximation(θv) of

the continuation value.

3One can also use finite horizon approximation to find the continuation value. We find this way to be unstable

in this exercise. The choice of learning rate might help improve the stability.
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– Obtain the updated continuation value(v̂ut ) from the definition:

v̂ut = E

 N∑
j=1

τjlog(cj,t) + βvu(zt, kt+1)

∣∣∣∣∣∣ zt−1


– Regress {v̂ut }Tt=1 on {zt, kt+1}Tt=1 to obtain the updated coefficients θ̂v

– θv = (1− ηv)θv + ηv θ̂v

• End while

This procedure is similar to the value function iteration but for a given policy g. So, no maxi-

mization is involved in calculating the continuation value in this step.

Policy Improvement

This step of the policy iteration algorithm uses the current approximation of the contin-

uation value to update the policy approximation. In the context of 2-country model, the

policy correspondence g(zt, kt) gives the next period’s capital for both the countries. So,

g(zt, kt) ≡ [g1 g2](zt, kt) where g1(zt, kt) = k1,t+1 and g2(zt, kt) = k2,t+1. Equations (13) -

(17) give the first order conditions for a 2-country model. The first order conditions will hold

with equality only under the optimal policy. So, equations (15) and (16) can be used to update

the arbitrary policy g to obtain the new policy ĝ as follows4.

ĝ1(zt, kt) =

β(θ6 + 2θ8g1(zt, kt) + θ11g2(zt, kt) + θ12z1,t + θ14z2,t)

λt

[
1 + φ

g1(zt, kt)− k1,t

k1,t

]
 g1(zt, kt) (18)

ĝ2(zt, kt) =

β(θ7 + 2θ9g2(zt, kt) + θ11g1(zt, kt) + θ13z1,t + θ15z2,t)

λt

[
1 + φ

g2(zt, kt)− k2,t

k2,t

]
 g2(zt, kt) (19)

These updating equations use the fact that, as the arbitrary policy converges to the optimum,

the term inside the square brackets converges to one and vice-versa.

4This representation was originally used in the context of parameterized expectations approach in Den Haan

(1990), Marcet and Lorenzoni (1998) and subsequently in Judd et al. (2011). We need not worry about the

t-measurability of period t + 1 variables as the first order conditions do not contain expectational terms.
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Parameters Values Meaning

α 0.36 Curvature of the production function

φ 0.5 Parameter of cost function

A 0.028 Parameter of production technology

σ 1 Coefficient of relative risk aversion

β 0.99 Discount rate

ρ 0.95 Persistence of productivity process

σε 0.01 Standard deviation of shocks to productivity

kss 1 Steady-state capital

T 1000 Length of each simulation

ηv 1 Learning rate of value

ηg 0.01 Learning rate of policy

Table 4: Multi-country RBC Model - Parameters

N Dimension Run Time(secs) Max. Error Avg. Error

2 4 523 3.3e-04 7.6e-05

4 8 781 4.47e-04 1.02e-04

6 12 1138 5.18e-04 1.08e-04

Table 5: Multi-country RBC Model - Performance

• Generate {ĝ(zt, kt)}Tt=1 using equations (18) and (19).

• Regress {ĝ(zt, kt)}Tt=1 on {zt, kt}Tt=1 to obtain the new policy coefficients θ̂g

• θg = (1− ηg)θg + ηg θ̂g

Since we do not explicitly solve the nonlinear equations using a solver, policy improvement step

can be extended in a straightforward way to a model with more than just two countries.

Table 4 gives the parameter values used to solve the multi-country model. All the parameter

values of the model are taken from Juillard and Villemot (2011). The number of periods in each

iteration is maintained at 1000. The learning rate of the policy(ηg) is set to be very low at 0.01.

Even a little higher value of ηg leads to an immediate divergence of the algorithm.

Table 5 gives the computational time and errors associated with the solution to the multi-

country model. N , as before, refers to the number of countries while dimension refers to the
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dimensionality of the state space(which is 2N). As can be seen, this algorithm performs incred-

ibly well both in terms of computational time and accuracy when we introduce more countries

. The runtime increases concavely with no big increase in error statistics as the dimensionality

of the problem increases. This algorithm shows great promise in solving elaborate dynamic

economic models with a large state space.

4.3 Lumpy Investment Model

The next application of our algorithm is the lumpy investment model of Khan and Thomas

(2003). This is an equilibrium model having heterogeneous production units distributed over

their capital holdings and a representative household who owns all the plants. The production

units in this model face a discrete choice of capital adjustment in a business cycle framework.

Each production unit has an associated capital stock k and a fixed cost ξ ∈ [0, B] which is

drawn from a stationary distribution G. The fixed cost is denominated in terms of hours of labor.

The output of the plant is given by y = zkθnν where z is the aggregate level of productivity

and the production function is common across all the production units. After its production,

each plant has to decide whether to pay its fixed cost realization and adjust its capital stock or

make no changes and let its capital holdings depreciate. Since the fixed cost draw differs across

the plants, the adjustment decision of each plant yields a distribution of plants (denoted by µ)

over the capital.

The aggregate states of the economy are {z, µ} while the individual states of each plant

are {k, ξ}. The law of motion of the distribution is a function of the aggregate states and is

given by µ′ = Γ(z, µ) where µ′ refers to the next period’s distribution. Plant’s problem, after

imposing the household’s equilibrium conditions is represented in units of marginal utility of

consumption(p(z, µ)) as follows. We do not go into further details of the model setup. The

original article contains an in-depth explanation of formulating the plant’s problem.

v1(k, ξ; z, µ) = max
n

(zkθnν − ωn+ (1− δ)k)p+

max

{
−ξωp+ max

k′
(−γk′p+ β

∫
z′
v0(k′; z′, µ′)H(dz′|z)),

−(1− δ)kp+ β

∫
z′
v0

(
1− δ
γ

k, ; z′, µ′
)
H(dz′|z)

} (20)

where

v0(k; z, µ) =

∫ B

0
v1(k, ξ; z, µ)G(dξ) (21)

14



Before proceeding to our solution algorithm, let us give a concise summary of the results used

in the original algorithm. The value of undertaking capital adjustment is given by:

E(z, µ) = max
k′

(
−γk′p+ β

∫
z′
v0(k′; z′, µ′)H(dz′|z)

)
(22)

Let the common level of capital that maximizes the above optimization be k∗(z, µ). From the

original functional equation (20), each plant faces a cutoff value of the adjustment cost(ξ̄) and

the plant will adjust if the cost draw is below the cutoff value and will not adjust if the cost is

above the cutoff value.

ξ̄(k, z, µ) = min{B,max{0, ξ̂k}}

where

−p(z, µ)ξ̂kω(z, µ) + E(z, µ) = −p(z, µ)(1− δ)k + β

∫
z′
v0

(
1− δ
γ

k, ; z′, µ′
)
H(dz′|z) (23)

Let kf (k, ξ; z, µ) denote the capital stock that a plant, with capital stock k and fixed cost draw

ξ, will start the next period with.

k′ = kf (k, ξ; z, µ) =


k∗(z, µ) if ξ ≤ ξ̄(k, z, µ)

1−δ
γ k if ξ > ξ̄(k, z, µ)

(24)

Using equation (24), we can explicitly define the law of motion of the distribution, µ′ = Γ(z, µ)

as follows. For k 6= k∗(z, µ),

µ′(k) =

[
1−G

(
ξ̄

(
γ

1− δ
k; z, µ

))]
µ

(
γ

1− δ
k

)
(25)

and if k = k∗(z, µ)

µ′(k) =

∫
K
G(ξ̄(k; z, µ))µ(dk) +

[
1−G

(
ξ̄

(
γ

1− δ
k; z, µ

))]
µ

(
γ

1− δ
k

)
(26)

where K ⊆ R+ is the set of capital levels. The market clearing quantities of consumption and

hours are given by

C =

∫
K

(
zF (k, nf (k; z, µ))−G(ξ̄(k; z, µ))[γk∗(z, µ)− (1− δ)k]

)
µ(dk) (27)

N =

∫
K

[
nf (k; z, µ) +

∫ ξ̄(k;,z,µ)

0
ξG(dξ)

]
µ(dk) (28)

where nf (k; z, µ) is the hours of labor chosen by a plant with capital holdings k. The model is

difficult to solve because the state space consists of the distribution(µ) which is a high dimen-

sional object. Khan and Thomas (2003) use a generalization of Krusell et al. (1998) algorithm to
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solve their model. Khan and Thomas (2003) replace the high dimensional object with a collec-

tion of moments implied by the distribution to reduce the dimensionality of the problem. In the

original Krusell et al. (1998) model, the prices are determined immediately once the aggregate

state vector is known which is not true in the case of lumpy investment model. So, Khan and

Thomas (2003) include an additional forecasting equation for the price along with the ones for

the aggregate moments. Khan and Thomas (2003) show that a function of just the mean of the

distribution and aggregate productivity is an excellent predictor of tomorrow’s aggregate state.

So, they approximate the state space by replacing distribution(µ) with its mean(m) to solve the

model5. The rules forecasting the current price p and the next period’s aggregate moment m′

are denoted by p = p̂(z,m;χp) and m′ = Γ̂(z,m;χm) respectively.

Khan and Thomas (2003) solve for v0 on a multidimensional grid of points and they use

tensor product splines to interpolate the values inside the grid. The original two-step algorithm

is as follows.

• Inner Loop: Using the current estimates of χp and χm, solve for v0 on a predefined grid

of points on z, k,m using equations (20)-(23).

• Outer Loop: This step simulates the economy over T periods obtaining the distribution of

plants µt at each time period. The aggregate moment m is directly calculated from µ, and

usingm′ from the assumed law of motion, the continuation value β
∫
z′ v

0(k′; z′, µ′)H(dz′|z))

is determined for any k′. By imposing the market clearing conditions (27) and (28), the

equilibrium price p can be obtained at each period. Using equations (25) and (26), obtain

µt+1 to go to the next period of the simulation. At the end of the simulation, the data

obtained on {pt,mt}Tt=1 are used to update the estimates of χp and χm.

In our implementation of the solution method, the first step of the original algorithm is replaced

with the simulation routine as explained below while the second step(outer loop) is identical to

what Khan and Thomas (2003) do. The two main differences of this solution method from the

original are:

• The first step(inner loop) uses a simulation based algorithm to solve for v0 instead of the

5Khan and Thomas (2003) also repeat the solution by replacing the distribution with two conditional means

instead of an aggregate mean, with practically no change in the results.
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grid based algorithm the original article uses.

• As a by-product of the simulation approach, the aggregate productivity z is treated as

a continuous variable compared to the discretized process used in the original method.

Because of this, the forecast rules for both the price and next period’s moment includes the

aggregate productivity as an explicit regressor while the original article derives conditional

forecast rules for different discrete values of z. Let the forecast rules for the current price(p)

and next period’s aggregate moment(m′) be given by p = p̂(z,m; θp) and m′ = Γ̂(z,m; θm)

respectively.

The simulation version of the algorithm is implemented as follows.

• Assume a functional form for v0. Let the coefficient vector be θv.

• Given the initial productivity realization z0, simulate the productivity realizations {zt}Tt=1

for T periods.

• While (θp or θm doesn’t converge)

– Given the initial aggregate moment m0 and the forecast rules, simulate {pt}Tt=0 and

{mt+1}Tt=0.

– While (θv doesn’t converge)

∗ for t = 1 to T

· Calculate {v0
t }Tt=1 using the current approximation θv, {zt}Tt=1,{pt}Tt=1, {mt}Tt=1

and equations (20)-(23).

∗ End for.

∗ Regress {v0
t }Tt=1 on {zt, pt,mt}Tt=1 to obtain the updated coefficients θ̂v.

∗ θv = (1− ηv)θv + ηv θ̂v.

– End while.

– Execute the outer loop with the updated approximation for v0 to obtain improved

estimates for θm and θp.

• End while.
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Parameters Values Meaning

γ 1.016 Trend growth rate

β 0.954 Discount rate

δ 0.06 Depreciation rate

θ 0.325 Capital share of output

ν 0.580 Labor share of output

A 3.614 Marginal utility of leisure

ρ 0.9225 Persistence of productivity process

σε 0.0134 Standard deviation of shocks to productivity

T 1000 Length of simulation in each iteration

ηv 1 Learning rate.

Table 6: Lumpy Investment Model - Parameters

Regression β1 β2 β3 SE R2

m′ 0.0059 0.3228 0.8488 8.71e-6 0.9979

p 1.1587 -0.6994 -0.4469 1.25e-5 0.9952

Each regression is of the form logy = β1 + β2logz + β3logm.

Table 7: Lumpy Investment Model - Forecasting rules

Table 6 lists the parameters used to solve the model. These parameters are identical to the

ones used by Khan and Thomas (2003) to solve the model. The inner loop iteration is very

stable and hence can sustain a learning rate of 1. But a learning rate of 0.3 had to be used for

the update of θm and θp in the outer loop else the algorithm oscillates and fails to converge. The

algorithm took 32 minutes to converge which can be improved further upon careful calibration

of algorithmic parameters.

Table 7 gives the converged forecast rules obtained from the simulation algorithm. The

standard errors and R2 associated with both the regressions reinforce the earlier finding that

statistical mean alone(along with the aggregate productivity) is a very good predictor of the

aggregate states. The standard errors of both the regressions are lower than their counterparts

in the original article.

Table 8 compares the business cycle statistics of a representative firm model, which is the
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Algorithm Y I C N w

Standard deviations

Khan-Thomas(2003) 1.91 6.37 0.94 1.10 0.94

Simulation 1.87 6.39 0.91 1.11 0.91

Contemporaneous correlations with output

Khan-Thomas(2003) 1.0000 0.971 0.924 0.946 0.924

Simulation 1.0000 0.967 0.909 0.942 0.909

log data HP filtered with λ of 100. Y = output, I = investment, C = consumption, N =

employment, w = wage.

Table 8: Representative Firm Model - Business Cycle Moments

Algorithm Y I C N w

Standard deviations

Khan-Thomas(2003) 1.91 6.37 0.93 1.10 0.93

Simulation 1.76 5.49 0.92 0.92 0.92

Contemporaneous correlations with output

Khan-Thomas(2003) 1.0000 0.972 0.926 0.947 0.926

Simulation 1.0000 0.975 0.954 0.955 0.955

log data HP filtered with λ of 100. Y = output, I = investment, C = consumption, N =

employment, w = wage.

Table 9: Lumpy Investment Model - Business Cycle Moments
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lumpy investment model with no fixed costs for capital adjustment. The statistics implied by

both the algorithms are very close to each other in this case. Table 9 gives the business cycle

moments of the lumpy investment model implied by the algorithms. In the case of simulation

based algorithm, labor, investment (and hence output)is less volatile compared to the benchmark

algorithm. Consumption (and hence wages) are more strongly correlated with output compared

to their counterparts in the benchmark case. This needs to be further investigated to find out

the reasons for the observed difference between the statistics.

One of the important ways forward is to attempt at relaxing the state space approximation

used in this model and other models of this type. The previous section showed that simulation

based algorithm is scalable to high dimensional applications. Hence it is a good candidate for

accomplishing this even though approximating the law of motion of the distribution would be

a challenge. Jirnyi and Lepetyuk (2011) attempts to relax the state space approximation in the

incomplete markets model of Krusell et al. (1998).

4.4 Sovereign Debt and Default Model

The final application of the simulation based algorithm is the sovereign default model of Arellano

(2008). This paper considers a small open economy receiving a stochastic endowment(y) each

period. The main objective of the government is to maximize the expected lifetime utility of

the representative agent. Each period, the sovereign has 2 decisions to make. First, it decides

whether to default on its existing debt(b) or not. If it decides to honor the existing debt, then the

government can choose its next period’s debt or savings(b′) by issuing one period non-contingent

bonds priced competitively. If the country chooses to default, the current outstanding debt is

written off, but the country faces two penalties. It has to suffer an instantaneous penalty in

terms of lost output and the country is banished to stay in autarky for this period. With a

probability θ the sovereign regains access to the credit market next period, and with probability

(1− θ), the country remains in autarky.

Let vc denote the value of honoring the contract(repay the debt) and vd the value of default.

v(b, y) = max
{c,d}
{vc(b, y), vd(y)} (29)
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vd(y) = u(ydef ) + β

∫
y′

[θv(0, y′) + (1− θ)vd(y′)]f(y′, y)dy′ (30)

vc(b, y) = max
b′

[
u(y − q(b′, y)b′ + b) + β

∫
y′
v(b′, y′)f(y′, y)dy′

]
(31)

where q(b′, y) represent the bond price at which the foreign lenders are willing to lend b′ to the

country with a current endowment of y. Lenders borrow or lend as long as the expected return

on the bonds equal the risk free rate r (risk neutral). In equilibrium, the bond price is

q(b′, y) =
1− δ(b′, y)

1 + r
(32)

δ(b′, y) is the probability that the country will default on its debt b′ next period.

The utility function is assumed to be the standard CRRA utility and the endowment follows a

log-normal AR(1) process. ydef is the penalized output associated with a default episode and is

given by

ydef =


ŷ if y ≥ ŷ

y if y < ŷ

(33)

The default models are difficult to solve as the value function v is no longer smooth. So, discrete

state space technique is the most common method to solve these models. Even though discrete

state space techniques are flexible and hence can solve non-smooth value functions, they also

suffer from the curse of dimensionality. Also, Hatchondo et al. (2010) show that discrete state

space method might lead to large approximation errors unless a significantly large number of

grid points are used. In this exercise, we attempt to apply the simulation algorithm to the

default model. Since this algorithm treats the state variables as continuous, this could be one

way to handle the criticism of Hatchondo et al. (2010).

As before, the algorithm that we use to solve the model uses stochastic simulation to generate

data points and iterates on the equations (29)-(31).

• Assume a functional form for vc and vd. Let the coefficient vector be γc and γd respectively.

• Given the initial output realization y0, simulate the outputs {yt}Tt=1.

• while (γc or γd doesn’t converge)

– for t = 1 to T

∗ If the sovereign is in autarky at period t, grant access to credit market with

probability θ.
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∗ Calculate vdt using equation (30).

∗ If the country has access to credit market, find the maximizing choice of b′ and

vc using equation (31) and (32).

∗ If the sovereign defaults at period t, exclude the country from credit market at

t+ 1, else bt+1 = b′.

– End for.

– Using {vct}Tt=1, {vdt }Tt=1, {yt}Tt=1 and {bt}Tt=1, update the approximation γc and γd.

• End while.

In the above algorithm, in order to calculate b′ and in turn vc, we need to calculate the

probability of default δ(b′, y). This is done as follows.

• If b′ ≥ 0 (i.e. the country saves)

– Default probability(δ(b′, y)) is 0.

• else

– Find the threshold level of tomorrow’s output(ȳ), below which the country will default

on the debt(b′) tomorrow.

– Probability of default (δ(b′, y)) is F (ȳ), where F is the CDF of y.

• End if.

To perform the maximization in (31), we start with an initial candidate(b0) by finding the

maximum on a discretized grid on the space of b. Using that as an initial guess, we use local

optimization routines around b0 to find the optimal debt b′. This procedure follows closely with

the one used by Hatchondo et al. (2010).

In this implementation, the value functions vc and vd are parameterized using quadratic

polynomials as follows.

vc(b, y) = α0 + α1b+ α2y + α3b
2 + α4y

2 + α5by

vd(y) = θ0 + θ1y + θ2y
2 + θ3D + θ4Dy + θ5Dy

2

where

D =


1 if y ≥ ŷ

0 if y < ŷ
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Parameters Values Meaning

r 0.017 Risk-free rate

σ 2 Coefficient of relative risk aversion

β 0.953 Discount rate

θ 0.282 Probability of redemption

ŷ 0.9718 Cutoff for default penalty

ρ 0.945 Persistence of productivity process

σε 0.025 Standard deviation of shocks to productivity

Table 10: Sovereign Default Model - Parameters

The functional form for vd has a dummy variable to factor-in the kink (at ŷ) introduced by the

penalty scheme. We use least squares regression with Tikhonov’s regularization for updating

the functional approximation.

Table 10 lists the parameter values used to solve this model. These are the values used in

the original Arellano (2008).

Figure 1: Sovereign Default Model - Value Function

Figure 1 shows the value function obtained from the algorithm. The algorithm, at the time

of writing, is not stable and the coefficients oscillate without achieving a monotone convergence

like previous applications. Even though the value function obtained thus far shows promise,
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more work needs to be done in order to stabilize the algorithm for this application.

Using stochastic learning rate schedules, as documented in George and Powell (2006) might

help in increasing the stability and the speed of convergence of the algorithm. Another promising

way forward in using stochastic simulations to solve models with discrete choice is to incorporate

the envelope theorem developed in Clausen and Strub (2012).

5 Conclusion and Future Work

In this paper, I develop an algorithm based on stochastic simulation framework and demonstrate

its usefulness in high dimensional applications by solving a multi-country business cycle model.

I also use this algorithm to solve the lumpy investment model of Khan and Thomas (2003).

Finally, I apply the algorithm to the sovereign default model of Arellano (2008) and more work

needs to be done on this front. Implementing stochastic simulation based algorithms for solving

models with discrete choice would be a valuable addition to the existing set of tools. Another

useful direction for future research is to leverage on these algorithms to relax the state space

approximation used in the solution methods of heterogeneous agent economies.
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